Power-Cylinder Friction Reduction through Coatings, Surface Finish, and Design

Arup Gangopadhyay(Presenter)Ford Motor Company

Ali Erdemir Argonne National Laboratory

June 7, 2016

Project ID # FT050

Overview

Timeline

- Project start date: Jan 1, 2015
- Project end date: Dec. 31, 2018
- Percent complete 60%

Budget

- Total project funding
 - DOE share: \$820,000
 - Contractor share: \$250,000
- Funding received in FY 2016: \$207,622
- Funding for FY 2017: \$252,511

Barriers

- Barriers addressed
- Reduce CO2 emissions
- Reduce dependency on foreign oil
- Conserve natural resources (petroleum)

Partners

- Argonne National Laboratory
- Suppliers
 - Comau
 - Gehring
 - Dow Chemical
 - Paramount
 - Mahle
 - KS
 - SwRI

Relevance

Overall Objectives

- Develop and demonstrate friction reduction technologies for light and medium duty vehicles improving 4% fuel efficiency by using
 - High porosity plasma transfer wire arc (PTWA) coatings
 - Low friction ring coatings
 - Low friction piston skirt nano-composite coating
 - Micro-polished crank journals
 - Low friction polyalkylene glycol engine oils

Objectives for this period

- Demonstrate deposition of high porosity plasma transfer wire arc (PTWA) coatings at porosity levels
 - 0-2%
 - 3-5%
 - 6-8%
- Demonstrate friction reduction potential of these coatings using bench and components tests
- Demonstrate friction reduction potential of micro-polished crank journals

Impact

- The technologies have the potential to
 - Significantly reduce CO₂ emissions
 - Conserve natural resources (petroleum)
 - Reduce dependency on foreign oil

Approach

Technology Development

- Develop high porosity PTWA coating (supplier collaboration)
 - Identify key coating deposition parameters and define their levels
 - Develop honing and surface finishing conditions
 - Understanding mechanism(s) of porosity generation
- Develop nano-composite coatings for rings and piston skirts
- Identify and develop micro-polishing of crank journals

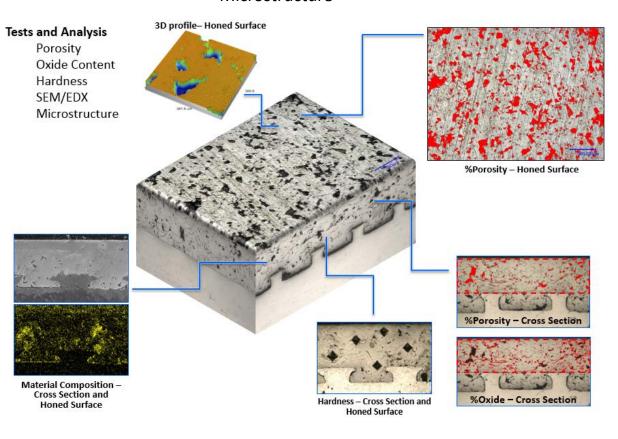
Technology Evaluation

- Laboratory bench tests (reciprocating tests)
- Motored single cylinder friction tests
- Motored multi-cylinder friction and wear tests
- Motored engine friction tests
- Fired single cylinder friction tests
- Chassis roll dynamometer tests

Milestone

		2015		2016			2017			2018								
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Status
Budget Period I	Develop PTWA Coating Deposition Method																	Complete
	Complete PTWA Coating Characterization																	Complete
	Complete Initial Nanocomposite Charact.																	Complete
	Deliver Initial Assessment of Friction Reduction Potential																	Complete
ā	Deliver High Porosity PTWA Coating		Go/N	lo-Go		•												Go
Budget Period II	Complete Friction Assessment of PTWA Cylinder Bore, Ring, and Piston Coatings Complete Lab Bench Test Fric Assessment Deliver Initial Wear Assessment on PTWA																	In-Progress
	Coatings Quantify Friction Benefits of Micro-polishing Demontrate Engine Component Friction								0 (1)									Complete
	Reduction								Go/N	No-Go		•						
Budget Period III	Demonstrate Friction Benefits – Single Cylinder Engine																	
	Demonstrate Friction Benefits – Full Motored Engine																	
	Demonstrate Friction Benefits – Vehicle																	
	Demonstrate Fuel Economy Benefit														l L	<u> </u>		

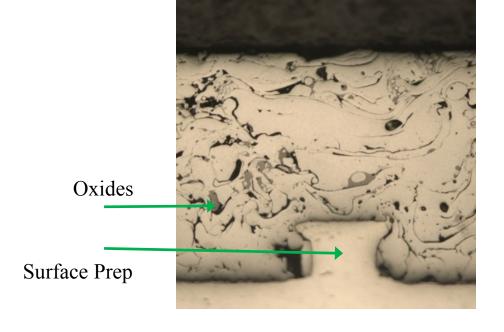
Key Deposition Conditions for High Porosity Plasma Transfer Wire Arc Coatings


Coating Deposition Conditions

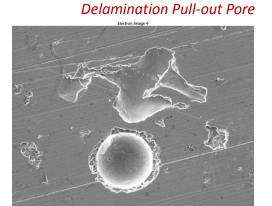
- Electrical Current
- Wire Material and Feed Rate
- Atomizing Gas Pressure and Type
- Plasma Gas Flow Rate
- Torch Design

7. Traverse Speed 2. atomising gas Air 4.5. plasma gases (H₂/Ar) 8. Amperage plasma 6. Spindle Speed

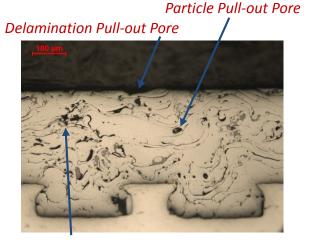
Coating Characterization


- Porosity, Cross Section and Honed Surface
- Oxide Content
- Hardness
- SEM/EDX, Material Composition
- Microstructure

High Porosity Plasma Transfer Wire Arc Coatings


A smooth finish is required to ensure exposing pores

- The pores are created by the Pullout mechanism.
- Different pull-out pores:
 - Particle pull-outs
 - Delamination or interlayer pull-outs



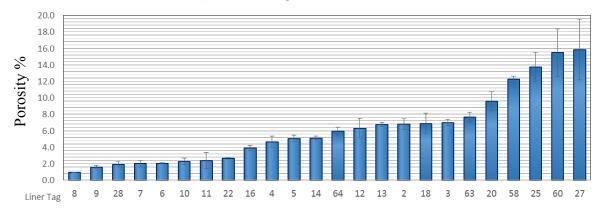
Honed Surface

Coating's Natural Porosity exposed by smooth hone

Particle Pull-out Pore

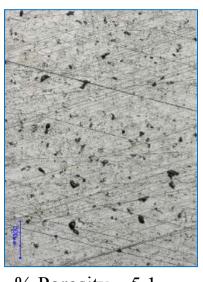
Coating's Natural Porosity

High Porosity Plasma Transfer Wire Arc Coatings

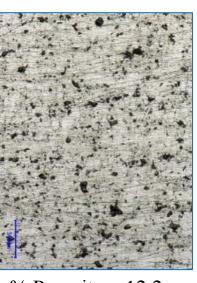

Produce PTWA coating with various levels of porosity

Go/No-Go Decision

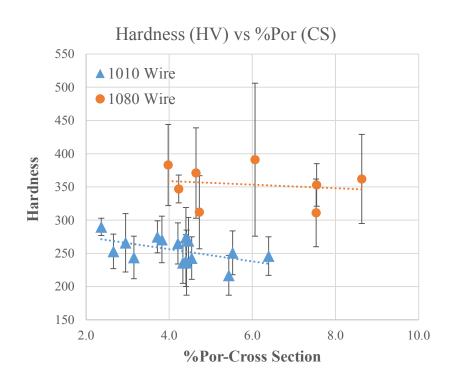
- Low Porosity: %Por < 2

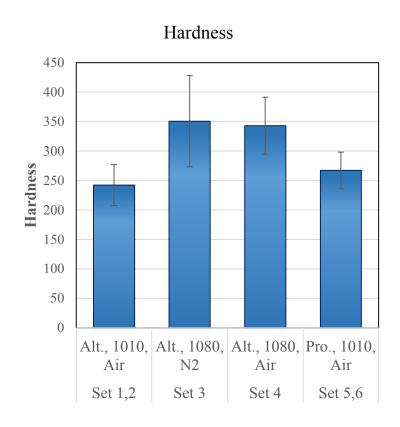

- Mid Porosity: 3 < %Por < 5

- High Porosity: 6 < %Por < 8


% Porosity -2.0

% Porosity - 5.1




% Porosity -7.0

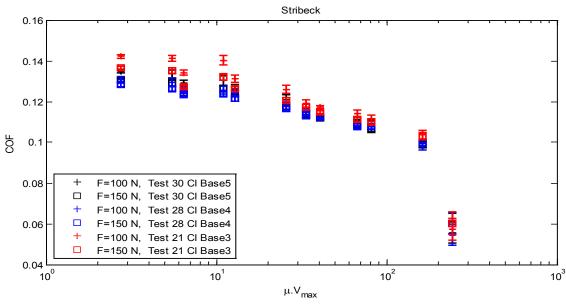
% Porosity – 12.2

High Porosity Plasma Transfer Wire Arc Coatings

Plint TE77 friction and wear test on ring segment and liner section

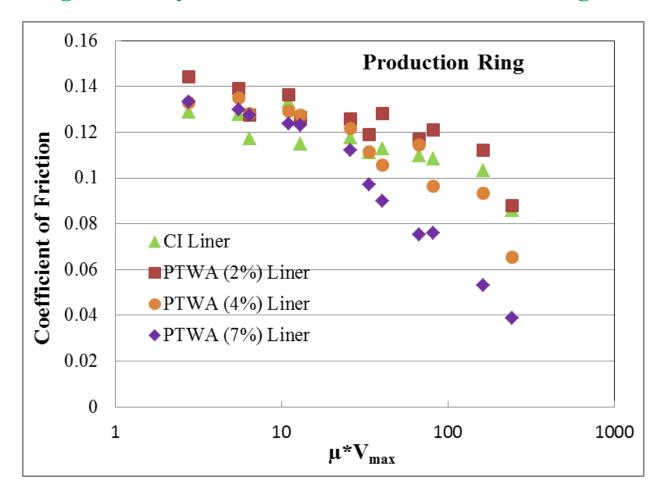
Procedure

- Run-in before the test and after changing temperature
- Parameter sweeps:

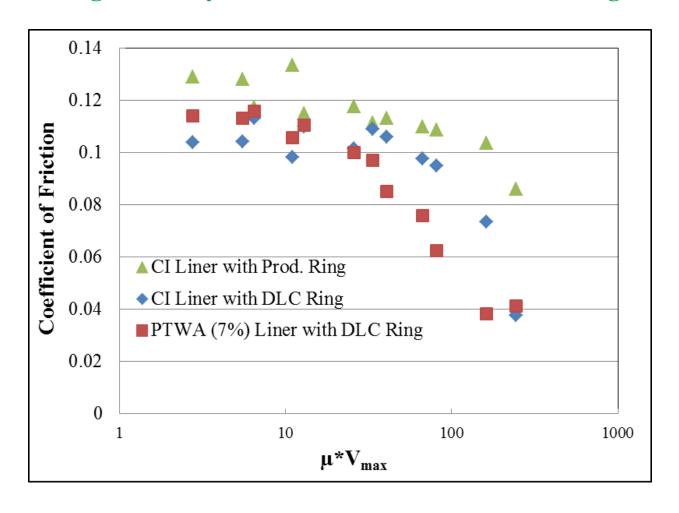

Temp.: 30, 50, 80, 120°C

Load: 50, 100, 150N

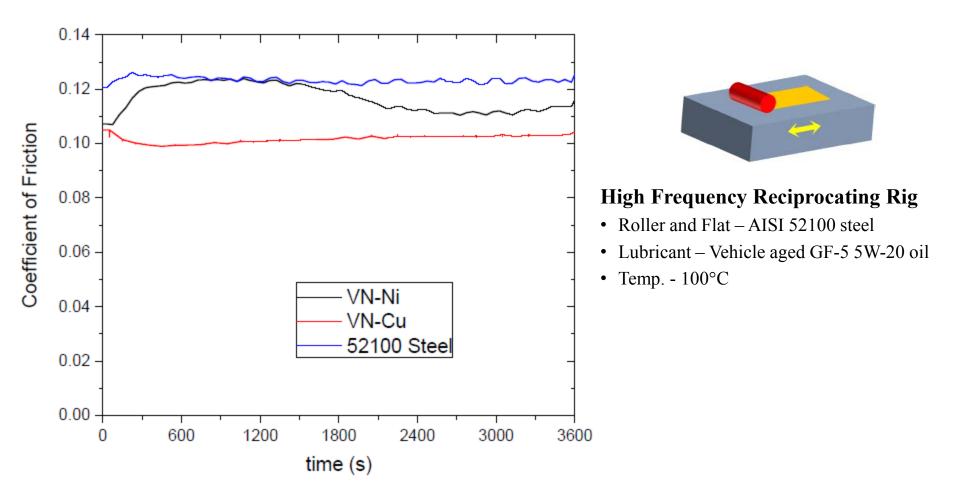
Frequency: 2, 5, 10, 20, 30Hz


Materials

- Liner sections:
 - Production, 92.5mm dia.
- Ring:
 - 87.5 mm dia., production
- Oil:
 - SAE 5W-20 GF-5 oil


The test procedure offers excellent repeatability

High Porosity Plasma Transfer Wire Arc Coatings


High porosity PTWA coatings offer friction benefit in mixed lubrication regime

High Porosity Plasma Transfer Wire Arc Coatings

DLC ring offers additional friction benefit

Nano-composite Coatings for Piston Rings and Skirts

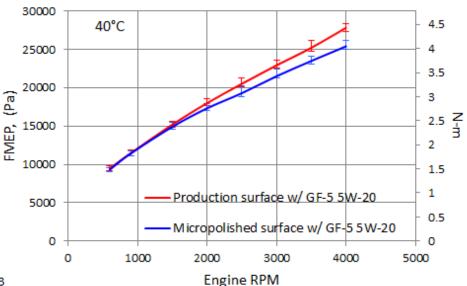
VN-Cu nano-composite coating showed friction benefit

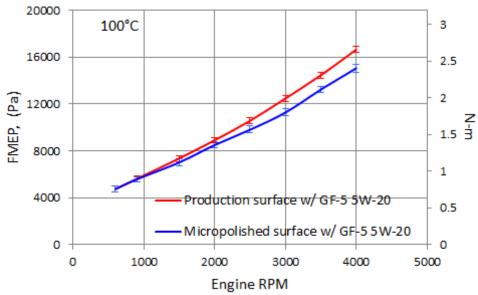
Motored Cranktrain Friction Rig

Objectives

- Demonstrate friction benefits from micro-polished crank journals
- Demonstrate friction benefits from low friction polyalkylene glycol oil

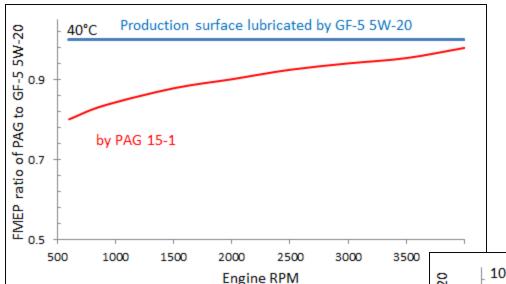
Test Method

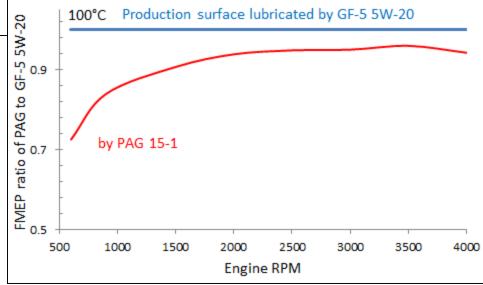

- Motored test
- Current production engine hardware
- GF-5 SAE 5W-20 oil (baseline oil)
- Temp.: 40°C, 60°C, 100°C, and 120°C



Effect of micro-polishing crank main journals

- Only the crank shaft was rotated
- No pistons, con rods


	Ra	Rq	Rz	Rt
Baseline Finish	0.17	0.22	1.4	1.9
Micro-Polished	0.05	0.07	0.58	0.69


Micro-polished journals showed friction benefit

Effect of Lubricant Formulation (Polyalkylene Glycol)

	KV at 40°C (cSt)	KV at 100°C (cSt)
GF-5 SAE 5W-20	48	8.6
PAG 15-1	20.3	5.5

3-30% friction benefit with PAG oil depending on temperature and engine speed

Coordination and Collaboration with Other Institutions

Collaboration – Argonne National Laboratory

- Development and deposition of nano-composite coatings (rings and piston skirts)
- Laboratory friction and wear tests
 - Ball-on-flat tests
 - Ring-liner tests
 - PTWA liner sections, nano-composite coatings

Coordination

- Comau: Development and deposition of high porosity PTWA coatings
- Gehring: Development of honing and finishing liners/blocks, CMM inspection
- Paramount: Mechanical roughening, inspection
- Mahle: low friction piston rings (Nitrided, PVD, DLC)
- KS Pistons for two engines
- Dow Chemical Low friction PAG lubricants
- SwRI Fired single cylinder tests

Remaining Challenges and Barriers

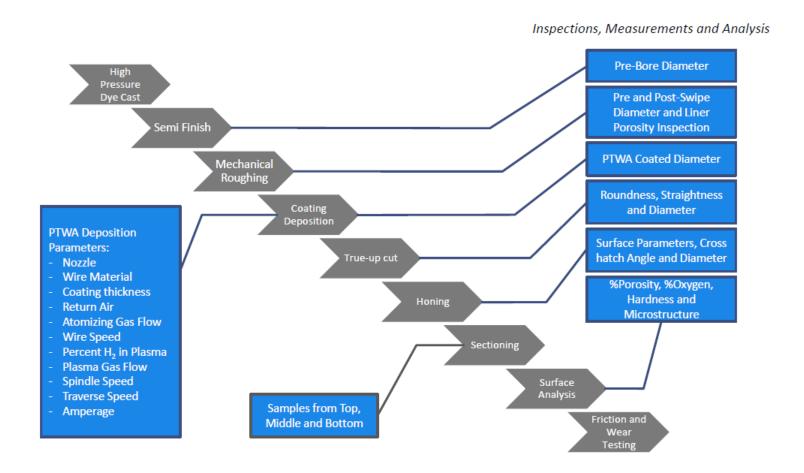
- Pressurized single cylinder friction test
 - Calibration and test procedure development
- Wear Assessment using radionuclide method
 - Data acquisition system functionality
 - Motored engine rig assembly support
- Engine components delivered on time by suppliers
- Availability of motored engine friction and chassis roll facility support when needed
- Measurable friction benefits observed in component and engine (motored and fired) tests
- Friction benefits observed by individual components may not add up to show total benefit $(2+2 \neq 4)$

Proposed Future Research

Demonstrate

- friction reduction on motored cranktrain rig with PTWA coated blocks (at various porosity levels) FY 2017 (In-progress) Go/No-Go Decision point
- friction reduction on motored cranktrain rig with PTWA coated blocks with low friction rings – FY 2017-18 (ordered rings)
- friction benefits on pressurized single cylinder friction rig
- friction benefits of piston skirt and ring nano-composite coatings against PTWA coated liner in laboratory bench rigs (FY 2017 (in- progress)
- friction benefits on motored full engine tests FY 2017-18 (planning in progress)
- friction benefits in fired single cylinder engine FY 2017 (hardware preparation Inprogress)
- durability (wear) of rings and PTWA coating in a motored cranktrain rig using RTM (FY2017-18)
- chassis roll fuel economy benefit (FY 2018)

Potential Issues and Barriers


- Pressurized single cylinder friction rig may not be fully functional to the desired level Fall back on multi-cylinder motored and fired single cylinder friction tests
- Maintaining project timeline because of complex coordination with various suppliers

Any proposed future work is subject to change based on funding levels.

Summary

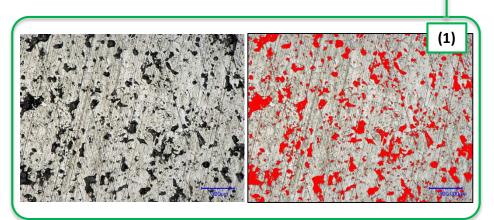
- The work to date has
 - Met (even exceeded) the first Go/No-Go decision point by demonstrating the ability to deposit PTWA coating at three porosity levels
 - Demonstrated friction benefit with high porosity PTWA coatings in lab bench rigs
 - Demonstrated low friction coatings (PVD, DLC) on rings provide additional friction benefit in lab bench rigs
 - Nano-composite VN-Cu coating showed promising friction reduction benefit
 - Demonstrated the effectiveness of micro-polished crank journals in reducing friction
 - Demonstrated the effectiveness of polyalkylene glycol based engine oil in reducing friction

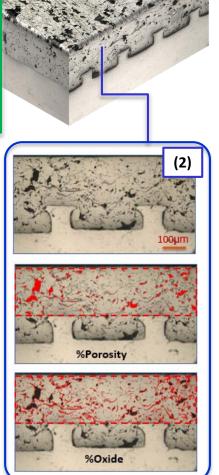
Technical Back-up Slides

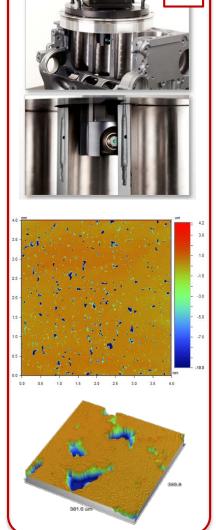
Achieving consistent coating quality requires multiple steps and complex coordination between various suppliers

Porosity Characterization

Developed different techniques to measure and quantify surface porosity.

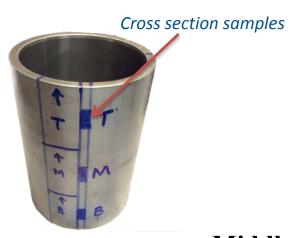

Microscopy Methods (for cylinder liners)


- 1. Keyence VHX2000 Digital Microscope to measure honed surface porosity.
- Microphot FXA Optical Microscope and ImagePro to measure cross section porosity and oxide phase.


Profilometry Method (for cylinder blocks)

3. In-bore 3D Optical Profilometer to measure porosity on honed engine blocks.

Developed standard porosity samples to tune different methods.

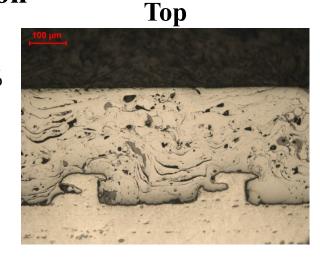


High Porosity Plasma Transfer Wire Arc Coatings

Porosity Characterization

\$4

Porosity: 4.31%


Error: <u>+</u>1.85%

Oxide: 10.22%

Error: <u>+</u>1.89%

Hardness:

Error:

Middle

\$4

Porosity: 5.09%

Error: <u>+</u>1.69%

Oxide: 10.36%

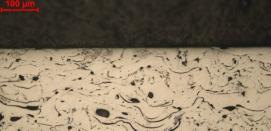
Error: <u>+</u>1.55%

Hardness:

Error:

\$4

Porosity: 3.85%


Error: <u>+</u>0.94%

Oxide: 8.51%

Error: <u>+</u>1.11%

Hardness:

Error:

Bottom

Consistent coating quality across liner stroke